Olivehurst Public Utility District
2015 Water Quality Consumer
Confidence Report
Public Water System Numbers 5810003 and 5805001

For additional information concerning your drinking water, contact Timothy R. Shaw at (530) 743-0317

Este informe contiene informacion muy importante sobre su agua beber. Traduzcalo o hable con alguien que lo entienda bien.

Daimntawv tshaj tawm no muaj lus taemceeb txog koj cov dej haus. Tshab tshais nws, los yog tham nrog tej tug neeg uas totaub brog nws.

Water for the Olivehurst Public Utility District originates from several groundwater sources as follows:

<table>
<thead>
<tr>
<th>System Number</th>
<th>Source Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5810003 (Olivehurst)</td>
<td>The first iron and manganese treatment plant treats water from Wells 31 and 32. Well 34 has an iron and manganese treatment plant that pumps treated water directly into the distribution system.</td>
</tr>
<tr>
<td>5805001 (Plumas Lake)</td>
<td>Iron and manganese treatment Plant #1 (for wells 10 and 28), #2 (for wells 1 and 4), and #3 (Wheeler Ranch, for Wells 29 and 30) provide treated water to the distribution system. Well 14 can pump directly into the distribution system during high demand. Well 9 is active but has no pump to pump into the distribution system.</td>
</tr>
</tbody>
</table>

DEFINITIONS OF TERMS USED IN THIS REPORT:

- **Maximum Contaminant Level (MCL):** The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is technologically, and economically feasible.
- **Primary Drinking Water Standards (PDWS):** MCLs for contaminants that affect health along with their monitoring and reporting requirements, and surface water treatment requirements.
- **Public Health Goal (PHG):** The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.
- **Maximum Contaminant Level Goal (MCLG):** The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the Federal Environmental Protection Agency (USEPA).
- **Notification Level:** Notification levels are health-based advisory levels established by the State Water Resources Control Board (State Board) for chemicals in drinking water that lack a primary maximum contaminant level. When chemicals are found at concentrations greater than their notification level, certain requirements and recommendations apply.
- **Maximum Residual Disinfectant Level (MRDL):** The level of a disinfectant added for water treatment that may not be exceeded at the consumer’s tap.
- **TON:** threshold odor number
- **ppb:** parts per billion or micrograms per liter
- **ppm:** parts per million or milligrams per liter
- **ND:** non detectable at testing limit
- **TDS:** total dissolved solids
- **NTU:** Nephelometric Turbidity Units
- **pCi/L:** picocuries per liter. Unit of measure used to express the results of radioactivity tests in water.
- **µS/cm:** MicroSiemens/cm – measure of conductance in water.

BACTERIOLOGICAL WATER QUALITY:

Testing for bacteriological contaminants in the distribution system is required by State regulations. This testing is done regularly to verify that the water system is free from coliform bacteria. The maximum number of positive coliform samples that is allowed by regulations in any one month is one.

In Olivehurst, four samples per week are required by regulations. Coliform bacteria were not detected in any samples in 2015.

In Plumas Lake, four samples per week are required by regulations. Coliform bacteria were not detected in any samples in 2015.

DETECTED CONTAMINANTS IN OUR WATER SUPPLY:

The following table gives a list of all detected chemicals in our water during the most recent sampling. Please note that not all sampling is required annually, so in some cases our results are more than one year old.

Plumas Lake Lead and Copper

<table>
<thead>
<tr>
<th>Chemical Detected</th>
<th>Year Tested</th>
<th>Numbers of Samples Collected</th>
<th>Number of Samples above AL</th>
<th>MCLG</th>
<th>90th Percentile Result (ppb)</th>
<th>Action Level (ppb)</th>
<th>Origin/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>2012</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>Internal corrosion of household plumbing systems; discharges from industrial manufacturing; erosion from natural deposits</td>
</tr>
<tr>
<td>Copper</td>
<td>2012</td>
<td>30</td>
<td>0</td>
<td>1300 ppb</td>
<td>62</td>
<td>1300</td>
<td>Internal corrosion of household plumbing systems; leaching from wood preservatives; erosion from natural deposits</td>
</tr>
</tbody>
</table>

Olivehurst Lead and Copper

<table>
<thead>
<tr>
<th>Chemical Detected</th>
<th>Year Tested</th>
<th>Numbers of Samples Collected</th>
<th>Number of Samples above AL</th>
<th>MCLG</th>
<th>90th Percentile Result (ppb)</th>
<th>Action Level (ppb)</th>
<th>Origin/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>2011</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>Internal corrosion of household plumbing systems; discharges from industrial manufacturing; erosion from natural deposits</td>
</tr>
</tbody>
</table>
OLIVEHURST

Sodium and Hardness PPM (No Standards – For Information Only)

<table>
<thead>
<tr>
<th>Chemical Detected</th>
<th>Year</th>
<th>Source(s) with detection(s)</th>
<th>Range of Detections</th>
<th>Average Detected</th>
<th>MCL or MRDL</th>
<th>PHG</th>
<th>Origin/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium</td>
<td>2011</td>
<td>Wells 1, 10, 14</td>
<td>13 – 22</td>
<td>18</td>
<td>none</td>
<td>none</td>
<td>Naturally Occurring</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>Wells 4, 29, 28</td>
<td>42 – 73</td>
<td>57.5</td>
<td>12</td>
<td>none</td>
<td>Naturally Occurring</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>n/a, one detection</td>
<td></td>
<td></td>
<td></td>
<td>none</td>
<td>Naturally Occurring</td>
</tr>
<tr>
<td>Hardness</td>
<td>2011</td>
<td>All sources</td>
<td>99 - 214</td>
<td>139</td>
<td>none</td>
<td>none</td>
<td>Naturally Occurring</td>
</tr>
</tbody>
</table>

Contaminants with a Primary MCL (PPB unless otherwise stated)

<table>
<thead>
<tr>
<th>Chemical Detected</th>
<th>Year</th>
<th>Source(s)</th>
<th>Range of Detections</th>
<th>Average Detected</th>
<th>MCL or MRDL</th>
<th>PHG</th>
<th>Origin/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>2011</td>
<td>Well 14</td>
<td>ND – 5.3</td>
<td>7</td>
<td>50</td>
<td>0.004</td>
<td>Naturally Occurring</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>Well 14</td>
<td>ND – 5.3</td>
<td>7</td>
<td>50</td>
<td>0.004</td>
<td>Naturally Occurring</td>
</tr>
<tr>
<td>Barium</td>
<td>2011</td>
<td>All sources</td>
<td>ND – 100</td>
<td>70</td>
<td>1000</td>
<td>2000</td>
<td>Naturally Occurring</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>Wells 1, 10, 14, 29</td>
<td>ND – 0.74</td>
<td>0.49</td>
<td>6</td>
<td>3</td>
<td>Naturally Occurring, Erosion of natural deposits</td>
</tr>
<tr>
<td>Cis-1,2 Dichloroethylene (naturally occurring)</td>
<td>2012</td>
<td>Well 4</td>
<td>0.14 – 0.23 ppm</td>
<td>0.19 ppm</td>
<td>2 ppm</td>
<td>Naturally Occurring, Erosion of natural deposits</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>All Sources</td>
<td>Well 28</td>
<td>0.13 – 0.19 ppm</td>
<td>0.16 ppm</td>
<td>1 ppm</td>
<td>Naturally Occurring, Erosion of natural deposits</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>All Sources</td>
<td>Well 28</td>
<td>0.15 ppm</td>
<td>2 ppm</td>
<td>Naturally Occurring, Erosion of natural deposits</td>
<td></td>
</tr>
<tr>
<td>Gross Alpha</td>
<td>2007</td>
<td>Wells 14, 29, 30</td>
<td>1.1 – 1.8 pCi/L</td>
<td>1.55 pCi/L</td>
<td>15 pCi/L</td>
<td>none</td>
<td>Naturally Occurring, Erosion of natural deposits</td>
</tr>
<tr>
<td>Xylenes</td>
<td>2011</td>
<td>Well 1</td>
<td>ND – 0.64</td>
<td>0.21</td>
<td>1.75</td>
<td>1.8</td>
<td>Naturally Occurring, Erosion of natural deposits</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>Wells 1, 10, 14, 29</td>
<td>ND – 21</td>
<td>7</td>
<td>100</td>
<td>12</td>
<td>Naturally Occurring, Erosion of natural deposits</td>
</tr>
<tr>
<td>Nickel</td>
<td>2011</td>
<td>Wells 1, 10, 14, 29</td>
<td>ND – 26</td>
<td>13</td>
<td>100</td>
<td>12</td>
<td>Naturally Occurring, Erosion of natural deposits</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>Wells 14, 29</td>
<td>ND – 26</td>
<td>13</td>
<td>100</td>
<td>12</td>
<td>Naturally Occurring, Erosion of natural deposits</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>Wells 28</td>
<td>ND – 140</td>
<td>330</td>
<td>300</td>
<td>none</td>
<td>Naturally Occurring, Erosion of natural deposits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n/a, one detection</td>
<td></td>
<td>3.9</td>
<td></td>
<td>none</td>
<td>Naturally Occurring, Erosion of natural deposits</td>
</tr>
</tbody>
</table>

Contaminants with a Secondary MCL (Non-Health Based, PPB unless otherwise stated)

<table>
<thead>
<tr>
<th>Chemical Detected</th>
<th>Year</th>
<th>Source(s)</th>
<th>Range of Detections</th>
<th>Average Detected</th>
<th>MCL or MRDL</th>
<th>PHG</th>
<th>Origin/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride</td>
<td>2012</td>
<td>Well 4, 29, 28</td>
<td>80 – 120</td>
<td>100 ppm</td>
<td>500 ppm</td>
<td>none</td>
<td>Naturally Occurring</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>Well 4, 29, 28</td>
<td>80 – 120</td>
<td>100 ppm</td>
<td>500 ppm</td>
<td>none</td>
<td>Naturally Occurring</td>
</tr>
<tr>
<td>Specific Conductance</td>
<td>2014</td>
<td>All Sources</td>
<td>Well 28</td>
<td>220 – 560 µS/cm</td>
<td>366 µS/cm</td>
<td>1600 µS/cm</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>All Sources</td>
<td>Well 28</td>
<td>n/a, one detection</td>
<td>250 µS/cm</td>
<td>none</td>
<td>Naturally Occurring</td>
</tr>
<tr>
<td>TDS</td>
<td>2012</td>
<td>Treatment plants</td>
<td>Well 28</td>
<td>370 – 380 ppm</td>
<td>375 ppm</td>
<td>1000 ppm</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>Treatment plants</td>
<td>Well 28</td>
<td>370 – 380 ppm</td>
<td>375 ppm</td>
<td>1000 ppm</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>Treatment plants</td>
<td>Well 28</td>
<td>370 – 380 ppm</td>
<td>375 ppm</td>
<td>1000 ppm</td>
<td>none</td>
</tr>
<tr>
<td>Iron</td>
<td>2011</td>
<td>Well 14</td>
<td>ND – 140</td>
<td>330</td>
<td>300</td>
<td>none</td>
<td>Naturally Occurring, Erosion of natural deposits</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>Treatment plants</td>
<td>Well 14</td>
<td>ND – 140</td>
<td>330</td>
<td>300</td>
<td>none</td>
</tr>
<tr>
<td>Manganese</td>
<td>2011</td>
<td>Well 14</td>
<td>ND - 16</td>
<td>320</td>
<td>300</td>
<td>none</td>
<td>Naturally Occurring, Erosion of natural deposits</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>Treatment plants</td>
<td>Well 14</td>
<td>ND – 16</td>
<td>320</td>
<td>300</td>
<td>none</td>
</tr>
<tr>
<td>Zinc</td>
<td>2011</td>
<td>Wells 1, 10, 14, 29</td>
<td>ND – 78</td>
<td>26</td>
<td>5000</td>
<td>none</td>
<td>Naturally Occurring</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>Wells 4, 29</td>
<td>ND – 59</td>
<td>29.5</td>
<td>5000</td>
<td>none</td>
<td>Naturally Occurring</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>Wells 28</td>
<td>ND – 140</td>
<td>74</td>
<td>5000</td>
<td>none</td>
<td>Naturally Occurring</td>
</tr>
<tr>
<td>Odor</td>
<td>2012</td>
<td>System</td>
<td>1.0 – 1.4 units</td>
<td>1.2 units</td>
<td>3 units</td>
<td>none</td>
<td>Naturally Occurring organic materials</td>
</tr>
</tbody>
</table>

Chlorine Residuals of the bacteriological samples

<table>
<thead>
<tr>
<th>Chemical Detected</th>
<th>Year</th>
<th>Source(s)</th>
<th>Range of Detections</th>
<th>Average Detected</th>
<th>MCL or MRDL</th>
<th>PHG</th>
<th>Origin/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Chlorine</td>
<td>2015</td>
<td>All Sources</td>
<td>0.58 – 0.98 ppm</td>
<td>0.76 ppm</td>
<td>4.0 ppm</td>
<td>4 ppm</td>
<td>Disinfectant added to the drinking water</td>
</tr>
</tbody>
</table>

UCMR 3 (see note) Monitoring and Unregulated Contaminants (contaminants without MCLs or PHGs, but with Notification Levels, PPB)

<table>
<thead>
<tr>
<th>Chemical Detected</th>
<th>Year</th>
<th>Source(s) with detection(s)</th>
<th>Range of Detections</th>
<th>Average Detected</th>
<th>MCL or MRDL</th>
<th>PHG</th>
<th>Notification Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromodichloromethane</td>
<td>2014</td>
<td>Well 1</td>
<td>n/a, one detection</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
<td>Runoff from agricultural fields</td>
</tr>
<tr>
<td>Chlorate</td>
<td>2013</td>
<td>Well 1, 4, 28.30</td>
<td>350 – 700</td>
<td>538</td>
<td>20</td>
<td>Naturally occurring, runoff from industrial waste</td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>2013</td>
<td>Well 1, 4, 28.30</td>
<td>0.12 – 0.39</td>
<td>0.28</td>
<td>0.3</td>
<td>Naturally occurring</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>2013</td>
<td>Well 30</td>
<td>n/a, one detection</td>
<td>3.8</td>
<td>2</td>
<td>2</td>
<td>Runoff from agricultural fields</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>2013</td>
<td>Well 30</td>
<td>n/a, one detection</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>Runoff from agricultural fields</td>
</tr>
<tr>
<td>Chromium</td>
<td>2013</td>
<td>Well 28</td>
<td>n/a, one detection</td>
<td>0.34</td>
<td>0.2</td>
<td>Naturally occurring, runoff from chemical and industrial processes</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: In 2012, USEPA revised the Unregulated Contaminant Monitoring Rule (UCMR 3 assessment monitoring) to assess and establish a new set of unregulated contaminants.
The presence of contaminants does not necessarily result in contaminants and potential health effects can be obtained by calling the USEPA’s Safe Drinking Water Hotline at 1-800-426-4791.

Some people who drink water containing hexavalent chromium in excess of the MCL over many years may have an increased risk of getting cancer.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly individuals, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The USEPA/Center for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline at 1-800-426-4791.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Plumas Lake

<table>
<thead>
<tr>
<th>Chemical Detected</th>
<th>Year</th>
<th>Source(s) with detection(s)</th>
<th>Range of Detections</th>
<th>Average Detected</th>
<th>MCL or MRDL</th>
<th>PHG</th>
<th>Origin/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness</td>
<td>2012</td>
<td>Well 1</td>
<td>n/a, one detection</td>
<td>87</td>
<td>83</td>
<td>none</td>
<td>Naturally Occurring</td>
</tr>
<tr>
<td></td>
<td>2013</td>
<td>Well 32,34</td>
<td>77 - 89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>2011</td>
<td>Well 3</td>
<td>n/a, one detection</td>
<td>27</td>
<td></td>
<td>none</td>
<td>Naturally Occurring</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>Well 1</td>
<td>26 - 37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2013</td>
<td>Well 32,34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contaminants with a Primary MCL (PPB unless otherwise stated)

- Barium: 2012 Well 1, 2013 Well 32,34
 - n/a, one detection: 120 - 130
 - Average Detected: 120
 - MCL or MRDL: 1000
 - PHG: 1000
 - Origin/Notes: Discharge of oil drilling wastes and from metal refineries; erosion of natural deposits. Well 3 is an untreated standby well

- Fluoride*: 2012 Well 1, 2013 Well 32,34
 - n/a, one detection: 0.10 ppm
 - Average Detected: 0.10 ppm
 - MCL or MRDL: 1 ppm
 - PHG: 2 ppm
 - Origin/Notes: Naturally Occurring. Water additive which promotes strong teeth; discharge from fertilizer and aluminum factories

- Gross Alpha: 2008 Well 3, 2015 All Sources
 - n/a, one detection: ND – 0.75 pCi/L
 - Average Detected: 1.30 ppm
 - MCL or MRDL: 15 pCi/L
 - PHG: none
 - Origin/Notes: Naturally occurring. Emission of natural deposits of certain minerals that are radioactive and may emit a form of radiation known as alpha radiation. Well 3 is an untreated standby well

Contaminants with a Secondary MCL (Non-Health Based, PPB unless otherwise stated)

 - n/a, one detection: ND - 340
 - Average Detected: 610
 - MCL or MRDL: 19
 - PHG: 300
 - Origin/Notes: Naturally Occurring; * Well 3 is an untreated standby well

- Manganese: 2011 Well 3
 - n/a, one detection: 60
 - Average Detected: 50
 - MCL or MRDL: none
 - PHG: none
 - Origin/Notes: Naturally Occurring; * Well 3 is an untreated standby well

- Chloride: 2011 Well 1, 2012 Well 1, 2013 Wells 32,34
 - n/a, one detection: 32 - 38
 - Average Detected: 50 ppm
 - MCL or MRDL: none
 - PHG: none
 - Origin/Notes: Naturally Occurring; Well 3 is an untreated standby well.

- Specific Conductance: 2014 Well 1, 2015 Wells 32,34
 - n/a, one detection: 290 µS/cm
 - Average Detected: 1600 µS/cm
 - MCL or MRDL: none
 - PHG: none
 - Origin/Notes: Substances that form ions when in water; seawater influence.

- Sulfate: 2012 Well 1, 2013 Well 32,34
 - n/a, one detection: 7.6 ppm
 - Average Detected: 500 ppm
 - MCL or MRDL: none
 - PHG: none
 - Origin/Notes: Runoff/leaching from natural deposits; industrial wastes

- TDS: 2012 Well 1, 2013 Wells 32,34
 - n/a, one detection: 216.5 ppm
 - Average Detected: 1000 ppm
 - MCL or MRDL: none
 - PHG: none
 - Origin/Notes: Naturally Occurring

Chlorine Residuals of the bacteriological samples

- Year 2015
- All Sources
- Notification Level 0.94 - 1.35 ppm
- Average Detected 1.11 ppm
- MCL or MRDL 4 ppm
- PHG 4 ppm
- Origin/Notes Disinfectant added to the drinking water.

Unregulated Contaminants (contaminants without MCLs or PHGs, but with Notification Levels, PPB)

- Year 2003
- Boron: Well 1
 - n/a, one detection: 100
 - Average Detected: 1000
 - MCL or MRDL: Naturally occurring

- Vanadium: Well 3
 - n/a, one detection: 7
 - Average Detected: 50
 - MCL or MRDL: Naturally occurring; Well 3 is an untreated standby well

- Hexavalent Chromium: Well 3
 - n/a, one detection: 2
 - Average Detected: none
 - MCL or MRDL: Naturally occurring; Well 3 is an untreated standby well

GENERAL INFORMATION ON DRINKING WATER:

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA’s Safe Drinking Water Hotline at 1-800-426-4791.

Some people who drink water containing hexavalent chromium in excess of the MCL over many years may have an increased risk of getting cancer.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly individuals, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The USEPA/Center for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline at 1-800-426-4791.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
• Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

• Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

• Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, agricultural application, and septic systems.

• Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (USEPA) and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that must provide the same protection for public health.

Arsenic:

While your drinking water meets the current federal and state standard for arsenic, it does contain low levels of arsenic. The standard balances the current understanding of arsenic’s possible health effects against the cost of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

REGULAR MEETINGS:

The Olivehurst Public Utility Board of Directors meets regularly on the third Thursday of every month at 7:00 p.m. The Meetings are held in the Board Chambers at 1970 9th Ave Olivehurst, CA.

A Water and Sewer Committee meets each month and reports back to the Board. The meetings are held at the OPUD offices at 1970 9th Ave Olivehurst, CA.

Copies of Board Meeting agendas and Committee agendas can be obtained by contacting the OPUD office at (530) 743-4657 or visiting the OPUD web site: www.opud.org

A source water assessment has been completed for the wells serving Olivehurst and Plumas Lake. The sources are considered most vulnerable to the following activities:

Olivehurst:

- Contaminant plume from lumber manufacturing, railroad yards, and sewer collection systems (Well 1 and 4)
- Agricultural Drainage and Animal Grazing (Well 10)
- Existing and Historic Gas Stations (Well 14)
- Sewer Collection Systems (Wells 9, 10, 29, 30)
- Septic Systems (Well 14)
- Auto Body Shops (Wells 9 and 10)
- Airports and Military Installations (Well 28)

Plumas Lake:

- Sewer collection systems
- Agricultural drainage
- Grazing
- Agricultural wells

A copy of the complete assessments may be viewed at:

ADDITIONAL INFORMATION:

Unregulated contaminant monitoring helps USEPA and the State Water Resources Control Board to determine where certain contaminants occur and whether the contaminants need to be regulated.

Metered Water

To comply with State requirements, drinking water meters were installed on all new construction homes in the OPUD service area, e.g. Plumas Lake, Wheeler Ranch, Summerfield, etc. OPUD has begun billing the radio read meters based on the meter reading. State law required that all meters be read by 2010. The goal is to be 100% metered rates by 2025.

Lead in Drinking Water

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. OPUD is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at 1-800-426-4791 or at http://www.epa.gov/safewater/lead.

Fluoridation

OPUD treated your water by adding fluoride to the naturally occurring level in both the Olivehurst and Plumas Lake systems in order to prevent dental caries in consumers until May 1, 2013 at which time fluoridation was discontinued. The fluoride levels were maintained at or near a recommended target concentration of 0.7 ppm, during fluoridation, as required by Department of Public Health regulations. Contact OPUD or visit the web page www.opud.org for details. Additional information about fluoridation and oral health may be obtained at http://www.waterboards.ca.gov/oertlic/drinkingswater/fluoridation.shtml